
Abstract

Trends in VLSI technology scaling demand that future comput-
ing devices be narrowly focused to achieve high performance
and high efficiency, yet also target the high volumes and low
costs of widely applicable general purpose designs. To address
these conflicting requirements, we propose a modular reconfig-
urable architecture called Smart Memories, targeted at com-
puting needs in the 0.1µm technology generation. A Smart
Memories chip is made up of many processing tiles, each con-
taining local memory, local interconnect, and a processor core.
For efficient computation under a wide class of possible appli-
cations, the memories, the wires, and the computational model
can all be altered to match the applications. To show the appli-
cability of this design, two very different machines at opposite
ends of the architectural spectrum, the Imagine stream proces-
sor and the Hydra speculative multiprocessor, are mapped onto
the Smart Memories computing substrate. Simulations of the
mappings show that the Smart Memories architecture can suc-
cessfully map these architectures with only modest perfor-
mance degradation.

1. Introduction

The continued scaling of integrated circuit fabrication technology
will dramatically affect the architecture of future computing sys-
tems. Scaling will make computation cheaper, smaller, and lower-
power, thus enabling more sophisticated computation in a growing
number of embedded applications. This spread of low-cost, low-
power computing can easily be seen in today’s wired (e.g. gigabit
ethernet or DSL) and wireless communication devices, gaming
consoles, and handheld PDAs. These new applications have differ-
ent characteristics from today’s standard workloads, often contain-
ing highly data-parallel streaming behavior [1]. While the
applications will demand ever-growing compute performance,
power (ops/W) and computational efficiency (ops/$) are also para-
mount; therefore, designers have created narrowly-focused custom
silicon solutions to meet these needs.

However, the scaling of process technologies makes the construc-
tion of custom solutions increasingly difficult due to the increasing
complexity of the desired devices. While designer productivity has
improved over time, and technologies like system-on-a-chip help to
manage complexity, each generation of complex machines is more
expensive to design than the previous one. High non-recurring fab-
rication costs (e.g. mask generation) and long chip manufacturing
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delays mean that designs must be all the more carefully validated,
further increasing the design costs. Thus, these large complex chips
are only cost-effective if they can be sold in large volumes. This
need for a large market runs counter to the drive for efficient, nar-
rowly-focused, custom hardware solutions.

To fill the need for widely-applicable computing designs, a number
of more general-purpose processors are targeted at a class of prob-
lems, rather than at specific applications. Tri-media [2,3], Equator
[4], Mpact [5], IRAM [6], and many other projects are all attempts
to create general purpose computing engine for multi-media appli-
cations. However, these attempts to create more universal comput-
ing elements have some limitations. First, these machines have
been optimized for applications where the parallelism can be
expressed at the instruction level using either VLIW or vector
engines. However, they would not be very efficient for applications
that lacked parallelism at this level, but had, for example, thread-
level parallelism. Second, their globally shared resource models
(shared multi-ported registers and memory) will be increasingly
difficult to implement in future technologies in which on-chip com-
munication costs are appreciable [7,8]. Finally, since these
machines are generally compromise solutions between true signal
processing engines and general-purpose processors, their efficiency
at doing either task suffers.

On the other hand, the need for scalable architectures has also led to
proposals for modular, explicitly parallel architectures that typically
consist of a number of processing elements and memories on a die
connected together by a network [9,10]. The modular nature of
these designs ensures that wire lengths shrink as technologies
improve, allowing wire and gate delays to scale at roughly the same
rate [7]. Additionally, the replication consumes the growing number
of transistors. The multiple processing elements take advantage of
both instruction-level and thread-level parallelism. One of the most
prominent architectures in this class is the MIT Raw project [10],
which focuses on the development of compiler technologies that
take advantage of exposed low-level hardware.

Smart Memories combines the benefits of both approaches to create
a partitioned, explicitly parallel, reconfigurable architecture for use
as a future universal computing element. Since different application
spaces naturally have different communication patterns and mem-
ory needs, finding a single topology that fits well with all applica-
tions is very difficult. Rather than trying to find a general solution
for all applications, we tailor the appearance of the on-chip mem-
ory, interconnection network, and processing elements to better
match the application requirements. We leverage the fact that long
wires in current (and future) VLSI chips require active repeater
insertion for minimum delay. The presence of repeaters means that
adding some reconfigurable logic to these wires will only modestly

Smart Memories: A Modular Reconfigurable Architecture
Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, Mark Horowitz

Computer Systems Laboratory
Stanford University

Stanford, California 94305
{demon,paaske,jayasena,ronho,billd,horowitz}@leland.stanford.edu



impact their performance. Reconfiguration at this level leads to
coarser-grained configurability than previous reconfigurable archi-
tectures, most of which were at least in part based on FPGA imple-
mentations [11-18]. Compared to these systems, Smart Memories
trades away some flexibility for lower overheads, more familiar
programming models, and higher efficiency.

Section 2 and Section 3 describe the Smart Memories architecture.
To test the flexibility of the architecture, we mapped onto the Smart
Memories substrate two machines at different ends of the architec-
tural spectrum: a dedicated streaming processor and a speculative
multiprocessor. Section 4 discusses the mapping of these two
widely disparate architectures onto one hardware substrate and the
simulated relative performance. Section 5 draws conclusions from
the architectural proposal and mapping studies.

2. Smart Memories Overview

At the highest level, a Smart Memories chip is a modular computer.
It contains an array of processor tiles and on-die DRAM memories
connected by a packet-based, dynamically-routed network
(Figure 1). The network also connects to high-speed links on the
pins of the chip to allow for the construction of multi-chip systems.
Most of the initial hardware design work in the Smart Memories
project has been on the processor tile design and evaluation, so this
paper focuses on these aspects.

Figure 1. A Smart Memories chip

The organization of a processor tile is a compromise between VLSI
wire constraints and computational efficiency. Our initial goal was
to make each processor tile small enough so the delay of a repeated
wire around the semi-perimeter of the tile would be less then a
clock cycle. This leads to a tile edge of around 2.5mm in a 0.1µm
technology [7]. This sized tile can contain a processor equivalent to
a MIPS R5000 [19], a 64-bit, 2-issue, in-order machine with 64KB
of on-die cache. Alternately, this area can contain 2-4MB of
embedded DRAM depending on the assumed cell size. A 400mm2

die would then hold about 64 processor tiles, or a lesser number of
processor tiles and some DRAM tiles.

Since large-scale computations may require more computation
power than what is contained in a single processing tile, we cluster
four processor tiles together into a “quad” and provide a low-over-
head, intra-quad, interconnection network. Grouping the tiles into

quads also makes the global interconnection network more efficient
by reducing the number of global network interfaces and thus the
number of hops between processors.

Our goal in the tile design is to create a set of components that will
span as wide an application set as possible. In current architectures,
computational elements are somewhat standardized; today, most
processors have multiple segmented functional units to increase
efficiency when working on limited precision numbers [20-24].
Since much work has already been done on optimizing the mix of
functional units for a wide application class [2,3,4,25], we instead
focused our efforts on creating the flexibility needed to efficiently
support different computational models. This requires creating a
flexible memory system, flexible interconnection between the pro-
cessing node and the memory, and flexible instruction decode.

3. Tile Architecture

A Smart Memories tile consists of a reconfigurable memory sys-
tem; a crossbar interconnection network; a processor core; and a
quad network interface (Figure 2). To balance computation, com-
munication, and storage, we allocated equal portions of the tile to
the processor, interconnect, and memory.

Figure 2. Tile floorplan

3.1  Memory System

The memory system is of growing importance in processor design
[26]. Different applications have different memory access patterns
and thus require different memory configurations to optimize per-
formance. Often these different memory structures require different
control logic and status bits. Therefore, a memory system that can
be configured to closely match the application demands is desirable
[27].

A recent study of SRAM design [28] shows that the optimal block
size for building large SRAMs is small, around a few KB. Large
SRAMs are then made up of many of these smaller SRAM blocks.
We leverage this naturally hierarchical design to provide low over-
head reconfigurability. The basic memory mat size of 8KB is cho-
sen based on a study of decoder and I/O overheads and an
architectural study of the smallest memory granularity needed.
Allocating a third of the tile area to memory allows for 16 indepen-
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dent 8KB memory mats, a total of 128KB per tile. Each mat is a
1024x64b logical memory array that can perform reads, writes,
compares, and read-modify-writes. All operations are byte-
maskable.

In addition to the memory array, there is configurable logic in the
address and data paths. In the address path, the mats take in a 10-bit
address and a 4-bit opcode to determine what operation is to be per-
formed. The opcode is decoded using a reconfigurable logic block
that is set up during the hardware configuration. The memory
address decoder can use the address input directly or can be set in
auto-increment/decrement streaming mode. In this mode, the mat
stores the starting index, stream count, and stride. On each stream-
ing mode request, the mat accesses the next word of the stream until
reaching the end of the stream.

Figure 3. Memory mat detail

In the datapath, each 64-bit word is associated with a valid bit and a
4-bit configurable control field. These bits can be used for storing
data state such as cache LRU or coherence bits. They are dual-
ported to allow read-modify-write operations each cycle and can be
flash cleared via special opcodes. Each mat has a write buffer to
support pipelined writes and to enable conditional write operations
(e.g. in the case of a cache write). Mats also contain logic in the out-
put read path for comparisons, so they can be used as cache tag
memory.

For complex memory structures that need multiple accesses to the
same data (e.g. snooping on the cache tags in a multiprocessor),
four of the mats are fully dual-ported. Many applications and archi-
tectures also need fully-associative memories which are inefficient
and difficult to emulate using mats. Therefore, the tile memory sys-
tem also contains a 64-entry content-addressable memory (CAM).

The Smart Memories mats can be configured to implement a wide
variety of caches, from simple, single-ported, direct-mapped struc-
tures to set-associative, multi-banked designs. Figure 4 gives an
example of four memory mats configured as a two-way set associa-
tive cache with two of the mats acting as the tag memories and two
other mats acting as the data memories.

Figure 4. Mats configured as 2-way set-associative cache

The mats can also be configured as local scratchpad memories or as
vector/stream register files. These simpler configurations have
higher efficiency and can support higher total memory bandwidth at
a lower energy cost per access [29-31]. Associated with the mem-
ory, but located in the two load-store units of the processor, are
direct-memory access (DMA) engines that generate memory
requests to the quad and global interconnection networks. When the
memory mats are configured as caches, the DMA engines generate
cache fill/spill requests. When the mats are configured for stream-
ing or vector memories, the DMA engines generate the needed
gather/scatter requests to fill the memory with the desired data.

3.2  Interconnect

To connect the different memory mats to the desired processor or
quad interface port, the tile contains a dynamically routed crossbar
which supports up to 8 concurrent references. The processor and
quad interface generate requests for data, and the quad interface and
memories service those requests. The crossbar does not intercon-
nect different units of the same type (e.g.memory mat to memory
mat communication is not supported in the crossbar).

Requests through the crossbar contain a tag indicating the desired
destination port and an index into the memory or unit attached to
that port. The crossbar protocol always returns data back to the
requestor, so data replies can be scheduled at the time of routing the
forward-going request. Requests can be broadcast to multiple mats
via wildcards, but only one data reply is allowed. The requests and
replies are all pipelined, allowing a requestor to issue a new request
every cycle. Arbitration is performed among the processor and quad
interface ports since multiple requests for the same mat or quad
interface port may occur. No arbitration is necessary on the return
crossbar routes, since they are simply delayed versions of the for-
ward crossbar routes.

From circuit-level models of the crossbar and the memories, the
estimated latency for a memory request is 2 processor clock cycles.
About half of the time is spent in the crossbar, and the other half is
spent in the memory mat. We project that our processor core will
have a clock cycle of 20 fanout-of-four inverter delays (FO4s),
which is comparable to moderately aggressive current processor
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designs [7]. In a commodity 0.1µm process, a 20 FO4 cycle time is
equivalent to a 1GHz operating frequency.

The quad interconnection network, shown in Figure 5, connects the
four tiles in a quad together. The network consists of 9 64-bit multi-
cast buses on which any of the 4 tiles or the global network can
send or receive data. These buses may also be configured as half-
word buses. In addition to these buses, a small number of control
bits are broadcast to update state, atomically stall the processors,
and arbitrate for the buses. The quad interface on each tile connects
the internal tile crossbar to the quad network, thus mediating all
communication to and from the tile.

Figure 5. Quad interconnection network

3.3  Processor

The processor portion of a Smart Memories tile is a 64-bit process-
ing engine with reconfigurable instruction format/decode. The com-
putation resources of the tile consist of two integer clusters and one
floating point (FP) cluster. The arrangement of these units and the
FP cluster unit mix are shown in Figure 6. Each integer cluster con-
sists of an ALU, register file, and load/store unit. This arithmetic
unit mix reflects a trade-off between the resources needed for a
wide range of applications and the area constraints of the Smart
Memories tile [2-5]. Like current media processors, all 64-bit FP
arithmetic units can also perform the corresponding integer opera-
tions and all but the divide/sqrt unit perform subword arithmetic.

The high operand bandwidth needed in the FP cluster to sustain
parallel issue of operations to all functional units is provided by
local register files (LRFs) directly feeding the functional units and a
shared register file with two read and one write ports. The LRF
structure provides the necessary bandwidth more efficiently in
terms of area, power, and access time compared to increasing the
number of ports to the shared register file [25,32]. The shared FP
register file provides a central register pool for LRF overflows and
shared constants. A network of result and operand buses transfers
data among functional units and the register files.

Optimal utilization of these resources requires that the instruction
bandwidth be tailored to the application needs. When ILP is abun-
dant, wide encodings explicitly express parallelism and enhance
performance without significantly degrading code density. When
ILP is limited, narrow instructions yield dense encodings without a
loss in performance. The Smart Memories instruction path, shown
at the block level in Figure 7, can be configured to efficiently sup-
port wide or narrow instruction encodings.

Figure 6. Smart Memories compute resources

A 256-bit microcode instruction format achieves the highest utiliza-
tion of resources. In this configuration, the processor issues opera-
tions to all available units in parallel and explicitly orchestrates data
transfers in the datapath. This instruction format is primarily
intended for media and signal processing kernels that have high
compute requirements and contain loops that can be unrolled to
extract ample parallelism. For applications that contain ILP but are
less regular, a VLIW instruction format that packs three instructions
in a 128-bit packet is supported. This instruction format provides a
compromise that achieves higher code density but less parallelism
than the microcode, yet higher parallelism but less code density
than narrow instructions.
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Figure 7. Instruction path

Finally, a 32-bit RISC-style instruction set is available for applica-
tions that do not exhibit much ILP. To extract thread-level parallel-
ism of such applications, each tile can sustain two concurrent,
independent threads. The two threads on a tile are asymmetric. The
primary thread may perform integer or FP computations and can
issue up to two instructions per cycle, while the secondary thread is
limited to integer operations at single-issue. The secondary thread
is intended for light-duty tasks or for system-level support func-
tions. For example, lower communication costs on systems with
multiple processing nodes on a chip permit dynamic data and task
migration to improve locality and load balance at a much finer grain
than is practical in conventional multi-processors. The increased
communication volume and resource usage tracking for such opera-
tions can easily be delegated to the secondary thread. The two
threads are assumed to be independent and any communication
must be explicitly synchronized.

For managing interaction with the memory mats and quad interface,
the tile processor has two load/store units, each with its own DMA
engine as described in Section 3.1. The load/store units, the func-
tional units, and the instruction decode share the 8 processor ports
into tile crossbar for communicating with the memory mats and
quad interface.

4. Mapping Streaming and Speculative
Architectures

One of the goals of the Smart Memories architecture is to effi-
ciently execute applications with a wide range of programming
models and types of parallelism. In the early stages of the project,
we could not feasibly create, analyze, and map a large number of
applications directly onto our architecture, yet we needed to evalu-
ate its potential to span disparate applications classes. Clearly the
memory system was general enough to allow changing the sizes
and characteristics of the caches in the system as well as to imple-
ment other memory structures. However, this is really only part of
what we need to support different computation models. To provide
some concrete benchmarks, we configured a Smart Memories
machine to mimic two existing machines, the Hydra multiprocessor
[33] and the Imagine streaming processor [25]. These two

machines, on far ends of the architectural spectrum, require very
different memory systems and arrangement of compute resources.
We then used applications for these base machines to provide feed-
back on the potential performance of Smart Memories. These
results are likely to be pessimistic since the applications were opti-
mized for the existing architecture machine and not for the Smart
Memories target machine.

Imagine is a highly-tuned SIMD/vector machine optimized for
media applications with large amounts of data parallelism. In these
machines, local memory access is very regular, and computation is
almost completely scheduled by the compiler. After looking at
Imagine, we will explore the performance of Hydra, a single chip 4-
way multiprocessor. This machine is very different from Imagine,
because the applications that it supports have irregular accesses and
communication patterns. To improve performance of these applica-
tions the machine supports speculative thread execution. This
requires a number of special memory structures and tests the flexi-
bility of the memory system.

4.1  Mapping Imagine

Imagine is a co-processor optimized for high-performance on appli-
cations that can be effectively encapsulated in a stream program-
ming model. This model expresses an application as a sequence of
kernels that operate on long vectors of records, referred to as
streams. Streams are typically accessed in predictable patterns and
are tolerant of fetch latency. However, streaming applications
demand high bandwidth to stream data and are compute-intensive.
Imagine provides a bandwidth hierarchy and a large number of
arithmetic units to meet these requirements.

The Imagine bandwidth hierarchy consists of off-chip DRAM, an
on-chip stream register file (SRF), and local register files (LRFs) in
the datapath. The SRF and LRFs provide increasing bandwidth and
allow temporary storage, resulting in reduced bandwidth demands
on the levels further away in the hierarchy. The SRF is a 64KB
multi-banked SRAM accessed via a single wide port. Streams are
stored in the SRF in the order they will be accessed, yielding high
bandwidth via the single port. The records of a stream are inter-
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leaved among the banks of the SRF. The LRF level consists of
many small register files directly feeding the arithmetic units.

The high stream bandwidth achieved through the storage hierarchy
enables parallel computation on a large number of arithmetic units.
In Imagine, these units are arranged into eight clusters, each associ-
ated with a bank of the SRF. Arithmetic resources of a cluster are
made up of three adders, two multipliers, and one divide/square-
root unit. The eight clusters exploit data parallelism to perform the
same set of operations on different records of a stream in parallel.
Within each cluster, ILP is exploited to perform parallel computa-
tions on the different units. All the clusters execute a single micro-
code instruction stream in lock-step, resulting in a single-
instruction multiple-data (SIMD) system.

For this study, we map the SRF and LRF levels of Imagine along
with its compute resources to the Smart Memories substrate. The
arrangement of these resources in Imagine is shown in Figure 8.
The LRFs are embedded in the compute clusters and are not shown
explicitly.

Figure 8. Imagine architecture

The 8-cluster Imagine is mapped to a 4-tile Smart Memories quad.
Exploiting the SIMD execution of Imagine clusters, each of the 64-
bit Smart Memories datapaths emulate two 32-bit Imagine clusters
in parallel. Like Imagine, the mapped implementation is intended to
be a co-processor under the control of an off-quad host. In the fol-
lowing sections, we describe the mapping of Imagine to the Smart
Memories, the differences between the mapping and Imagine, and
the impact on performance.

4.1.1  Mapping the bandwidth hierarchy

In mapping Imagine to Smart Memories, we configure all the mem-
ory mats on the tiles as streaming and scratchpad memories. Most

of the mats are allocated to the SRF and are configured in streaming
mode as described in Section 3.1. Data structures that cannot be
streamed, such as lookup tables, are allocated in mats configured as
scratchpad memories. Instructions are stored in mats with the
decoders configured for explicit indexed addressing. The homoge-
neity of the Smart Memories memory structure allows the alloca-
tion of resources to the SRF and scratchpad to be determined based
on the capacity and bandwidth requirements of each on a per-appli-
cation basis. The LRFs of Imagine map to the almost identical LRF
structure of the Smart Memories datapath.

The SRF is physically distributed over the four tiles of a quad, with
a total SRF capacity of up to 480KB. Records of a stream are inter-
leaved among the tiles, each active stream occupying the same mat
on every one of the four tiles, and different streams occupying dif-
ferent mats. Multiple streams may be placed on non-overlapping
address ranges of the same mat at the cost of reduced bandwidth to
each stream. This placement allows accesses to a mat to be sequen-
tial and accesses to different streams to proceed in parallel. The
peak bandwidth available at each level of the hierarchy in Imagine
and the mapping is summarized in Table 1. The mapping can sus-
tain bandwidth per functional unit comparable to Imagine at both
the SRF and LRF levels.

4.1.2  Mapping the computation

In the Smart Memories datapath, the majority of computations are
performed in the FP cluster where the bandwidth to sustain parallel
computation is provided by the LRFs and result buses. Microcode
instructions are used to issue operations to all FP units in parallel.
The integer units of Smart Memories tiles are used primarily to per-
form support functions such as scratchpad accesses, inter-tile com-
munication, and control flow operations which are handled by
dedicated units in Imagine.

4.1.3  Mapping off-tile communication

Much of the data bandwidth required in stream computations is to
local tile memory. However, data dependencies across loop itera-
tions require communication among tiles within the quad. In the
mapping, these communications take place over the quad network.
Since we emulate two 32-bit Imagine clusters on a tile, the quad
network is configured as a half-word network to allow any commu-
nication pattern among the eight mapped clusters without incurring
a serialization penalty.
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Streams that generate or consume data based on run-time condi-
tions require dynamic communication to distribute records among
all or a subset of the compute clusters. The communication pattern
for these dynamic events, generated by dedicated hardware in
Imagine, is determined by a table lookup in the Smart Memories
mapping. The broadcast control bits in the Smart Memories quad
network distribute status information indicating participation of
each cluster in an upcoming communication. These bits combine
with state information from previous communications to form the
index into the lookup-table.

Gather and scatter of stream data between the SRF and off-quad
DRAM, fetch of microcode into the local store, communication
with the host processor, and communication with other quads are
performed over the global network. The first or final stage of these
transfers also utilizes the quad network but receives a lower priority
than intra-quad communications.

4.1.4  Evaluation of the Imagine Mapping

To evaluate the performance of the mapping, we conducted cycle-
accurate simulations of four kernels by adapting the Imagine com-
pilation and simulation tools. The simulations accounted for all dif-
ferences between Imagine and the mapping, including the hardware
resource differences, the overheads incurred in software emulation
of certain hardware functions of Imagine, and serialization penal-
ties incurred in emulating two Imagine clusters on a tile. When an
aspect of the mapping could not be modeled exactly using the
Imagine tools, we modeled the worst-case scenario. Latencies of
32-bit arithmetic operations were assumed to be the same for both
architectures since their cycle times are comparable in gate delays
in their respective target technologies. The kernels simulated - a
1024-point FFT, a 13-tap FIR filter, a 7x7 convolution, and an 8x8
DCT - were optimized for Imagine and were not re-optimized for
the Smart Memories architecture.

Simulations show that none of the observed kernels suffer a slow-
down due to inadequacy of the available SRF bandwidth of four
accesses per cycle. However, constraints other than SRF bandwidth
lead to performance losses. Figure 9 shows the percentage perfor-
mance degradation for the four kernels on the mapping relative to
Imagine. These performance losses arise due to the constraints dis-
cussed below.

Reduced unit mix

The Smart Memories FP cluster consists of two fewer units (an
adder and a multiplier) than an Imagine cluster, which leads to a
significant slowdown for some compute bound kernels (e.g.con-
volve). Simulations show that simply adding a second multiplier
with no increase in memory or communication bandwidth reduces
the performance degradation relative to Imagine forconvolve from
82% to 7%. We are currently exploring ways to increase the com-
pute power of the Smart Memories tile without significantly
increasing the area devoted to arithmetic units.

Bandwidth constraints (within a tile)

In the Smart Memories datapath, communication between the FP
and integer units and memory/network ports takes place over a lim-
ited number of buses. This contrasts with a full crossbar in Imagine
for the same purpose, leading to a relative slowdown for the map-
ping.

Longer latencies

The routed, general interconnects, used for data transfers outside of
compute clusters in the Smart Memories architecture, typically
have longer latencies compared to the dedicated communication
resources of Imagine. While most kernels are tolerant of stream
access latencies, some that perform scratchpad accesses or inter-
cluster communications are sensitive to the latency of these opera-
tions (e.g.fir). However, heavy communication does not necessarily
lead to significant slowdowns if the latency can be masked through
proper scheduling (e.g.fft). Other causes of latency increases
include the overheads of emulating certain functions in software in
the mapping, and serialization delays due to emulating two clusters
on a single tile.

Figure 9. Performance degradation

According to simulation results, the bandwidth hierarchy of the
mapping compares well with that of the original Imagine and pro-
vides the necessary bandwidth. However, constraints primarily in
the compute engines and communication resources lead to an over-
all performance loss. The increase in run-time over Imagine is mod-
erate: 47% on average and within a factor of two for all the kernels
considered. These results demonstrate that the configurable sub-
strate of Smart Memories, particularly the memory system, can sus-
tain performance within a small factor of what a specialized
streaming processor achieves.

4.2  Mapping Hydra

The Hydra speculative multiprocessor enables code from a sequen-
tial machine to be run on a parallel machine without requiring the
code to be re-written [34][35]. A pre-processing script finds and
marks loops in the original code. At run-time, different loop itera-
tions from the marked loops are then speculatively distributed
across all processors.
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The Hydra multiprocessor hardware controls data dependencies
across multiple threads at run-time, thereby relaxing the burden on
the compiler and permitting more aggressive parallelization. As
shown in Figure 10, the Hydra multiprocessor consists of four
RISC processors, a shared on-die L2, and speculative buffers which
are interconnected by a 256-bit read bus and a 64-bit write-through
bus. The speculative buffers store writes made by a processor dur-
ing speculative operation to prevent potentially invalid data from
corrupting the L2. When a processor commits state, this modified
data is written to the L2. The read bus handles L2 accesses and fills
from the external memory interface while the write-through bus is
used to implement a simple cache-coherence scheme. All proces-
sors snoop on the write-through bus for potential RAW violations
and other speculative hazards.

Figure 10. Hydra architecture

When a speculative processor receives a less-speculative write to a
memory address that it has read (RAW hazard), a handler invali-
dates modified lines in its cache, restarts its loop iteration, and noti-
fies all more-speculative processors that they must also restart.
When the head (non-speculative) processor commits, it begins work
on a thread four loop iterations from its current position and notifies
all speculative processors that they must update their speculative
rank.

During the course of mapping Hydra we found that performance
degradation was introduced through three factors: memory configu-
ration limitations, algorithmic simplifications, and increases in
memory access time. Similar to the approach taken with Imagine,
we conducted cycle-level simulations by adapting the Hydra simu-
lation environment [35] to reflect the Smart Memories tile and quad
architecture.

4.2.1  Memory configuration

In the Smart Memories implementation of Hydra, each Hydra pro-
cessor and its associated L1 caches reside on a tile. The L2 cache
and speculative write buffers are distributed among the four tiles
that form a quad. Figure 11 shows the memory mat allocation of a
single tile. The dual-ported mats are used to support three types of
memory structures: efficient set-associative tags, tags that support
snooping, and arbitration-simplifying mats.

Figure 11. Hydra’s tile memory mat allocation

One quarter of the L2 resides on each tile. The L2 is split by
address, so a portion of each way is on each tile. Rather than dedi-
cate two mats, one for each way, for the L2 tags, a single dual-
ported mat is used. Placing both ways on the same tile reduces the
communication overhead. Single-ported memories may be effi-
ciently used as tag mats for large caches, but they inefficiently
implement tags for small caches. For example, the L1 data tags are
not completely utilized because the tags only fill 2KB. The L1 data
tags are dual-ported to facilitate snooping on the write bus under the
write-through coherence protocol.

Finally, dual-ported mats are used to simplify arbitration between
two requestors. The CAM (not shown) stores indices which point
into the speculation buffer mat, which holds data created by a spec-
ulative thread. Data may be written to this mat by the tile’s proces-
sor and then read by a more speculative processor on an L1 miss at
the same time. In this case, the dual-ported mat avoids complex
buffering and arbitration schemes by allowing both requestors to
simultaneously access the mat.

The Smart Memories memory mats architecture causes certain
aspects of the mapping’s memory configuration to differ from those
of the Hydra baseline [36], as detailed in Table 2. Compared to
Hydra, the Smart Memories configuration uses lower set-associativ-
ity in the L2 and L1 instruction caches to maximize the memory
mat utilization. The performance degradation due to lower associa-
tivity is at most 6% as shown in Figure 12.
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4.2.2  Algorithmic modifications

Algorithmic modifications were necessary, since certain Hydra-spe-
cific hardware structures were not available. This section presents
two examples and their performance impact.

Conditional gang-invalidation

On a restart, Hydra removes speculatively modified cache lines in
parallel through a conditional gang-invalidation if the appropriate
control bit of the line is set. This mechanism keeps unmodified lines
in the cache as opposed to clearing the entire cache, thus improving
the L1 hit rate. Although the conditional gang-invalidation mecha-
nism is found in other speculative architectures, such as the Specu-
lative Versioning Cache [37], it is not commonly used in other
architectures and introduces additional transistors to the SRAM
memory cell. Therefore, in the Smart Memories mapping, algorith-
mic modifications are made so the control bits in the L1 tag are not
conditionally gang-invalidated.

Under Hydra’s conditional gang-invalidation scheme, lines intro-
duced during speculation are marked as valid lines and are invali-
dated when a thread restarts. In the Smart Memories configuration,
lines introduced during speculation are valid for a specified time
period and are only permanently marked valid if they are accessed
before the processor’s next assigned thread commits. Simulations
show that this alternative to conditional gang-invalidation decreases
performance by up to 12% and requires two extra bits in the tag.

L2 Merge

In Hydra, the L2 and speculative buffers are centrally located, and
on an L1 miss, a hardware priority encoder returns a merged line.
Data is collected from the L2 and less speculative buffers on a
word-by-word basis where the more recent data has priority. How-
ever, in Smart Memories the L2 and speculative buffers are distrib-
uted. If a full merge of all less-speculative buffers and the L2 is
performed, a large amount of data is unnecessarily broadcast across
the quad network.

Simulations show that most of the data comes from either the L2 or
the nearest less-speculative processor on an L1 miss. Therefore, the
L2 merge bandwidth is reduced by only reading data from the L2
and the nearest less-speculative processor’s speculative write buffer.
Neglecting the different L2 latency under the Smart Memories
memory system leads to a performance degradation of up to 25%.
The performance degradation is caused by a small number of
threads which are restarted when they read the incorrect data on an
L2 access.

4.2.3  Access Times

The memory access times in the Smart Memories mapping are
larger due to two factors: crossbar delay and delay due to distrib-
uted resources. Hydra has a 1-cycle L1 access and a 4-cycle L2
merge, while the Smart Memories configuration has a 2-cycle L1
access and 7-cycle L2 merge. The delay through the crossbar
affects the L1 access time, and since the L2 is distributed, the L2
merge time is increased. The 2-cycle load delay slot is conserva-
tively modeled in our simulations by inserting nops without code
rescheduling; the resulting performance degradation is up to 14%.

The increased L2 access time has a greater impact on performance
than the L1 access time and causes performance degradations
greater than 40% on them88ksim andwc benchmarks. The perfor-
mance degradations on the other benchmarks are less than 25%.
The increase in the L2 access time is due to the additional nearest-
neighbor access on the quad interconnect.

4.2.4  Simulation results

Figure 12 shows the performance degradations caused by the
choice of memory configurations, algorithms, and memory access
latency. The memory access latency and algorithmic changes con-
tribute the greatest amount of performance degradation, whereas
the configuration changes are relatively insignificant. Since the
Hydra processors pass data through the L2, the increased L2
latency in Smart Memories damages performance the most for
benchmarks that have large amounts of communication between
loop iterations, such ascompress, m88ksim, andwc.

Figure 12. Performance degradation
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TABLE 2. Memory configuration comparison
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In Figure 13, the Smart Memories and Hydra speedups are calcu-
lated by dividing the execution time of one of the processors in
Hydra by the respective execution times of the Smart Memories and
Hydra architectures. Scalar benchmarks,m88ksim andwc, have the
largest performance degradations and may actually slow down
under the Smart Memories configuration. Since Hydra does not
achieve significant speedup on these benchmarks, they should not
be run on this configuration of Smart Memories. For example, we
would achieve higher performance on thewc benchmark if we
devoted more tile memory to a larger L1 cache.

Figure 13. Speedup

5. Conclusion

Continued technology scaling causes a dilemma -- while computa-
tion gets cheaper, the design of computing devices becomes more
expensive, so new computing devices must have large markets to be
successful. Smart Memories addresses this issue by extending the
notion of a program. In conventional computing systems the memo-
ries and interconnect between the processors and memories is fixed,
and what the programmer modifies is the code that runs on the pro-
cessor. While this model is completely general, for many applica-
tions it is not very efficient. In Smart Memories, the user can
program the wires and the memory, as well as the processors. This
allows the user to configure the computing substrate to better match
the structure of the applications, which greatly increases the effi-
ciency of the resulting solution.

Our initial tile architecture shows the potential of this approach.
Using the same resources normally found in a superscalar proces-
sor, we were able to arrange those resources into two very different
types of compute engines. One is optimized for stream-based appli-
cations,i.e. very regular applications with large amounts of data
parallelism. In this machine organization, the tile provides very
high bandwidth and high computational throughput. The other
engine was optimized for applications with small amounts of paral-
lelism and irregular memory access patterns. Here the programma-
bility of the memory was used to create the specialized memory
structures needed to support speculation.

However, this flexibility comes at a cost. The overheads of the
coarse-grain configuration that Smart Memories uses, although
modest, are not negligible; and as the mapping studies show, build-
ing a machine optimized for a specific application will always be
faster than configuring a general machine for that task. Yet the
results are promising, since the overheads and resulting difference
in performance are not large. So if an application or set of applica-
tions needs more than one computing or memory model, our recon-
figurable architecture can exceed the efficiency and performance of
existing separate solutions. Our next step is to create a more com-
plete simulation environment to look at the overall performance of
some complete applications and to investigate the architecture for
inter-tile interactions.
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